UNUSUAL 1,3-HYDROGEN SHIFT IN THE REACTION OF ${\rm Na}_2{\rm Fe}\left({\rm CO}\right)_4$ WITH METHYL E-3-CHLORO-2-BUTENOATE

Take-aki MITSUDO, Hiroyoshi WATANABE, Yoshihisa WATANABE and Yoshinobu TAKEGAMI

Department of Hydrocarbon Chemistry, Faculty of Engineering,
Kyoto University, Sakyo-ku, Kyoto 606

Methyl E-3-chloro-2-butenoate reacts with $\mathrm{Na_2Fe(CO)_4}$ in THF at 25°C affording an unexpected [n^3 -2-(methoxycarbonylmethyl)-acryloyl]tricarbonylferrate which has been derived by an unusual 1,3-hydrogen shift. The reaction was rationalized by assuming a (n^2 -allene)hydridoferrate intermediate.

 β -Elimination and readdition of hydridometal complexes are very important factors which determine the structure of organic products in the reaction involving alkyl- 1) and alkenyl- 2) metal complexes. We now report an unusual 1,3-hydrogen shift in a reaction of a halovinyl compound with Na₂Fe(CO)₄, which is reasonably considered to proceed via (η^{2} -allene)hydridocarbonylferrate.

Methyl Z-3-chloro-2-butenoate (3 mmol) reacted with Na₂Fe(CO)₄³⁾ (3 mmol) in tetrahydrofuran at 25°C affording the expected { η^3 -[Z-2-methyl-3-(methoxycarbonyl)-acryloyl]}tricarbonylferrate, which was isolated as a bis(triphenylphosphine)iminium salt^{4,5,6)} in a 55% yield (Scheme). The reaction may be rationalized by the substitution reaction of the halide with $[Fe(CO)_4]^{2^-}$ followed by the insertion of a CO group and the co-ordination of the olefinic group to the iron atom⁴⁾ (Scheme). The reaction of methyl E-3-chloro-2-butenoate with Na₂Fe(CO)₄ also gave yellow micro crystals (yield 59%), however, the following observations and the spectral data of and the complex shown in the Table exhibited that the structure is not the expected $\frac{6}{5}$ but $[\eta^3$ -2-(methoxycarbonylmethyl)acryloyl]tricarbonylferrate χ^{6} ; 1) the $\frac{1}{1}$ H nmr spectrum taken at -30°C⁷⁾ exhibited the signals due to two metal-coordinated vinylidene protons (&, 2.15(1H) and 2.51(1H), J²O Hz) instead of the expected terminal methyl protons. Furthermore an AB quartet (&, 2.29(1H) and 2.92(1H) J=14.0 Hz) due to nonequivalent sp³ methylene protons was observed which was assigned to the methoxycarbonylmethyl group. 2) $\frac{13}{5}$ C nmr spectrum also showed the presence of a co-ordinated

Table. Ir, 1 H and 13 C nmr Spectral Data of 3 and 7.

Complex	Ir(KBr, cm ⁻¹)	¹ H nmr (8 ppm, TMS, CD ₂ 0	13 _{C nmr}
[PPN] + [PPN] + [MeO ₂ C Fe (CO) ₃ 3	1990 1910 1890	1.50(s, 3H))C-CH ₃ 3.40(s, 1H) CH= 3.42(s, 3H) OMe	20.5(qd, J _{CH} ¹²⁷ , J _{CCCH} ^{2.2}) 32.7(m, J _{CCH} ^{5.8}) C=C=C 47.8(dq, J _{CH} ^{153.7} , J _{CCCH} 4.9) H-C= 243.9(s) FeC=O
$[PPN]^{+} \begin{bmatrix} CO_2Me \\ CH_2 \\ H^2 \\ Fe \\ (CO)_3 \end{bmatrix}$	1977 1905 1875	2.15(s,1H, J°_{2} 0) H_{2}^{1} 2.51(s,1H, J°_{2} 0) H_{2}^{1} 2.29 (ABq, $J=14.0$) CH_{2} 3.48(s, 3H) OMe	31.8(s) C=C=C=0 33.4(dd, J _{CH} 152, 170) =CH ₂ 41.4(t, J _{CH} 131) CH ₂ 248.9(s) FeC=0

olefinic group (δ , 31.8 (s) and 33.4 (dd, J=152, 170 Hz) ppm), a methylene group (41.4 (t) J=131 Hz) and an acyl-iron group (248.9 ppm (s))⁴⁾. 3) The ir spectrum showed the terminal $\nu_{\text{C}\equiv 0}$ of the complex having minus charge on it (1977, 1905 and 1875 cm⁻¹) and a characteristic band of η^3 -acryloyl group (1725 cm⁻¹) as well as the $\nu_{\text{C}=0}$ of the ester group (1695 cm⁻¹). The complex χ can be derived by the 1,3-hydrogen shift of the methyl proton in δ .

In order to account for this result we postulate the following reaction route. 8)

1) The corresponding alkenyl-iron complex \S is formed 4). 2) Dissociation of a carbon monoxide and the β -elimination of \S gives (η^2 -allene)hydridoferrate \S which isomerizes to \S 0. 3) Readdition of the hydride and the migratory insertion of a carbonyl group and the co-ordination of the olefinic group affords \S 7. The discrepancy of the reaction of \S 1 and \S 2 may be partly due to the stabilization effect of a methoxycarbonyl group at α 1 position of \S 2 group in the reaction of \S 3 which may make a chelate ring such as \S 4. The β -elimination-readdition reaction of an alkenyl iridium complex α 1 a (α 2-allene)hydridoiridium complex was reported 2), however, the product was α 3-allyl complex derived by 1,2-hydrogen shift. To our knowledge, this is the first example of a 1,3-hydrogen shift which is reasonably considered to proceed α 2 a (α 3-allene)-hydridometal complex.

ĮĮ

[PPN] + = bis(triphenylphosphine)iminium cation

References and Notes

1) For example, see C. P. Casey and C. R. Cyr, J. Amer. Chem. Soc., <u>93</u>, 1280(1971) and references cited therein.

10

- 2) J. Schwartz, D. W. Hart and B. McGiffert, ibid., 96, 5613(1974).
- 3) M. P. Cooke, ibid., 92, 6082(1970).
- 4) The reaction of haloviny1 compounds with ${\rm Na}_2{\rm Fe(CO)}_4$ giving $(\eta^3$ -acryloy1)tricarbony1-ferrate has been reported briefly; T. Mitsudo, H. Nakanishi, T. Inubushi,
 - I. Morishima, Y. Watanabe and Y. Takegami, J. C. S. Chem. Comm., 1976, 416,

- J. Chem. Soc. Dalton, 1978, 1298. The further detailed results were presented at the 37 th Annual Meeting of the Chem. Soc. of Japan, Yokohama (1978), J. Chem. Soc. Dalton, in press.
- 5) X-ray molecular structure of a derivative of $\frac{3}{2}$ was determined, K. Nakatsu, Y. Inai, T. Mitsudo, H. Nakanishi, Y. Watanabe and Y. Takegami, J. Organometal. Chem., $\frac{159}{2}$, 111 (1978).
- 6) Satisfactory analytical data for \mathfrak{Z} and \mathfrak{Z} were obtained.
- 7) ^{1}H and ^{13}C nmr spectra showed the temperature dependence. At 30°C, the signals of the vinylidene group were broadened.
- 8) 1,3-Sigmatropic reaction in 8 may not be ruled out completely.

(Received November 11, 1978)